Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available December 18, 2025
- 
            Abstract In this manuscript, we report the first demonstration of controlled helicity in extended graphene nanoribbons (GNRs). We present a wealth of new graphene nanoribbons that are a direct consequence of the high‐yielding and robust synthetic method revealed in this study. We created a series of defect‐free, ultralong, chiral cove‐edged graphene nanoribbons where helical twisting of the graphene nanoribbon backbone is tuned through functionalization with chiral side chains.S‐configured point chiral centers in the side chains transfer their chiral information to induce a helically chiral, right‐handed twist in the graphene nanoribbon. As the backbone is extended, these helically twisted graphene nanoribbons exhibit a substantial increase in their circular dichroic response. The longest variant synthesized consists of an average of 268 linearly fused rings, reaching 65 nm in average length with nearly 10 full end‐to‐end helical rotations. The structure exhibits an extraordinary |Δε| value of 6780 M−1cm−1at 550 nm—the highest recorded for an organic molecule in the visible wavelength range. This new chiroptic material acts as room‐temperature spin filters in thin films due to its chirality‐induced spin selectivity.more » « less
- 
            Abstract Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach that directly images EPs in real space on femtosecond scales in a range of polaritonic architectures. We focus our analysis on EP propagation in layered halide perovskite microcavities. We reveal that EP–phonon interactions lead to a large renormalization of EP velocities at high excitonic fractions at room temperature. Despite these strong EP–phonon interactions, ballistic transport is maintained for up to half-exciton EPs, in agreement with quantum simulations of dynamic disorder shielding through light-matter hybridization. Above 50% excitonic character, rapid decoherence leads to diffusive transport. Our work provides a general framework to precisely balance EP coherence, velocity, and nonlinear interactions.more » « less
- 
            Sepsis is a lethal syndrome manifested by an unregulated, overwhelming inflammation from the host in response to infection. Here, we exploit the use of a synthetic heparan sulfate octadecasaccharide (18-mer) to protect against sepsis. The 18-mer not only inhibits the pro-inflammatory activity of extracellular histone H3 and high mobility group box 1 (HMGB1), but also elicits the anti-inflammatory effect from apolipoprotein A-I (ApoA-I). We demonstrate that the 18-mer protects against sepsis-related injury and improves survival in cecal ligation and puncture mice and reduces inflammation in an endotoxemia mouse model. The 18-mer neutralizes the cytotoxic histone-3 (H3) through direct interaction with the protein. Furthermore, the 18-mer enlists the actions of ApoA-I to dissociate the complex of HMGB1 and lipopolysaccharide, a toxic complex contributing to cell death and tissue damage in sepsis. Our study provides strong evidence that the 18-mer mitigates inflammatory damage in sepsis by targeting numerous mediators, setting it apart from other potential therapies with a single target.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
